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Abstract

The two-dimensional Vlasov–Maxwell system, for a plasma with mobile, magnetised electrons and ions, is inves-

tigated numerically. A previously developed method for solving the two-dimensional electrostatic Vlasov equation,

Fourier transformed in velocity space, for mobile electrons and with ions fixed in space, is generalised to the fully

electromagnetic, two-dimensional Vlasov–Maxwell system for mobile electrons and ions. Special attention is paid to the

conservation of the divergences of the electric and magnetic fields in the Maxwell equations. The Maxwell equations are

rewritten, by means of the Lorentz potentials, in a form which conserves these divergences. Linear phenomena are

investigated numerically and compared with theory and with previous numerical results.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

For many decades, methods of solving numerically the Vlasov equation have been developed, including

methods based on Hermite and Fourier expansions [1,7] and methods based on the time splitting scheme

[6], which has been generalised to higher dimensions for simulations of magnetised plasma [5,21]. Con-

vective schemes have also been developed for the collisional Boltzmann equation [12], and a conservative

scheme has been developed for the one-dimensional Vlasov equation [13].

A problem with the Vlasov equation is its tendency of becoming oscillatory in velocity space, potentially
giving rise to recurrence effects where parts of the initial condition artificially reappear in the numerical

solution [1,6]. Several approaches of minimising effects due to the recurrence phenomenon have been de-

veloped: In the original time-splitting scheme [6] smoothing operators are applied to the numerical solution

so that the finest structures are damped out on the numerical grid. A filtered method based on a convo-

lution by a Gaussian function in velocity space has been developed for the Fourier–Fourier method [19],

and for the time-splitted Fourier–Fourier method [18]. In the filtered method, the Vlasov equation is
E-mail address: bengt@tp4.ruhr-uni-bochum.de.

0021-9991/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00295-X

mail to: bengt@tp4.ruhr-uni-bochum.de


502 B. Eliasson / Journal of Computational Physics 190 (2003) 501–522
transformed into an equation with smoother solutions. Another approach was the Fourier–Fourier

method, where the Vlasov equation is Fourier transformed both in x and v space [1]. Taking up this line of

ideas, methods to solve the electrostatic Vlasov–Poisson system, Fourier transformed analytically in ve-

locity space, was developed for the cases of one velocity and one spatial dimension [10] and for two velocity

and two spatial dimensions [11], and where the problem with filamentation was solved by devicing outflow

boundary conditions in the Fourier transformed velocity space; the outflow of information in the Fourier

transformed velocity space represents a dissipation of information in velocity space. In the present article,

the previously developed method for the two-dimensional Vlasov equation [10] for electrons in magnetized
plasma is extended to include the fully electromagnetic treatment of the Maxwell equation together with the

two-dimensional Vlasov equations for magnetised electrons and ions, making it possible to study numer-

ically the non-linear interactions between electron and ion Bernstein modes, electromagnetic X waves, and

upper and lower hybrid waves, etc.

Mathematically, moments in velocity space are converted to evaluation operators in the Fourier

transformed velocity space. Therefore, charge and current densities are in the Fourier transformed

velocity space are calculated by means of evaluations (instead of moments) of the Fourier transformed

particle distribution functions and of its first derivatives, at the origin of the Fourier transformed
velocity space.

In the solution of the Maxwell equations, special attention is paid to the divergence problem for the

electric and magnetic fields. In the Maxwell equations, the equations for the divergences of the electric and

magnetic fields have the twofold properties of being both initial conditions to the remaining equations, and

of being conserved quantities of the Maxwell equations. These two properties may not be carried over to a

discretised version of the Maxwell equations. Artificial positive and negative charges may be deposited on

the numerical grid by the numerical scheme. The charges do not move and may therefore be regarded as

infinitely massive [29]. This problem has been known for a long time, and special numerical methods have
been developed to avoid the problem, such as finite-difference time-domain (FDTD), finite-volume time-

domain (FVTD), and finite-element time-domain (FETD) methods; see [9] and references therein. We

mention the following methods used for solving the Maxwell equation together with the Vlasov equation:

[8] developed a current-conserving particle-mesh scheme for the relativistic Vlasov–Maxwell system. Ref.

[23] (see also [3]) formulates the problem in terms of the electrodynamic potentials, and uses the Coulomb

gauge ($x � A ¼ 0) for the vector potential, and the numerical scheme is formulated so that the continuity

equation for the currents and charges need not be fulfilled exactly. Ref. [22] adds a ‘‘pseudo current’’ term

to the Amp�eere law, which diffuses away errors in the divergence of E, and where a parabolic equation has to
be solved. Ref. [2] reformulated the Maxwell equations into a constrained system, using Lagrange multi-

pliers associated with the divergence conditions and solved the resulting system with a finite element

method. [17] proposed the least-squares finite element method (LSFEM) for the treatment of spurious

solutions in the numerical solution of the Maxwell equations.

The Vlasov equation is in the present article advanced in time using the fourth-order Runge–Kutta

method, and we wish to invoke the Maxwell equation into this scheme while still conserving the divergences

of the electric and magnetic fields. This is performed by using the electrodynamic potentials together with

the Lorentz condition, giving rise to Lorentz inhomogeneous wave equations. These are written in a form
which ensures that the divergences of the electromagnetic fields are fulfilled up to the local truncation error

of the numerical scheme, without requiring that the continuity equation for the currents and charges is

fulfilled exactly. To our knowledge, this is a new approach which we have not found in earlier literature.

We think that the method presented here for solving the Vlasov–Maxwell system can be suitable for

solving basic non-linear problems in plasma physics. Together with the Fourier transform technique in

velocity space [which is motivated in Section 2.2], we are using pseudo-spectral methods for approximating

derivatives in space, and fourth-order compact schemes to approximate derivatives in the Fourier trans-

formed velocity space, and the standard fourth-order Runge–Kutta scheme to advance the system in time.
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The use of high-order methods should make it possible to solve the system with relatively few sampling

points, and thereby reduce the need for computer memory, etc. We point out that the method is still re-

stricted to periodic boundary conditions in space, and that the generalisation to open boundaries in space is

an unsolved problem.

The outline of the article is as follows. We state the three-dimensional Vlasov–Maxwell system in Section

2 where the Fourier transform technique is discussed in general, as well as the conservation of divergences

ion the Maxwell equations and the Lorentz potentials used. In Section 4 the Vlasov–Maxwell system is

reduced to two spatial and velocity dimensions and prepared for numerical simulations by scaling of
variables, discretisation, etc. The numerical examples in Sections 4.4 and 4.5 checks how well the numerical

scheme conserves invariants of the Vlasov–Maxwell system, and compare simulations of electromagnetic

electron and ion X waves with dispersion laws obtained from linear fluid theory and kinetic theory. Finally,

conclusions are drawn in Section 5.
2. The three-dimensional Vlasov–Maxwell system

The non-relativistic Vlasov equation

ofa
ot

þ v � $xfa þ
Fa

ma
� $vfa ¼ 0; ð1Þ

where the nabla operators $x and $v denote differentiation with respect to x and v, respectively, and where

the Lorentz force is

Fa ¼ qa½Eþ v� ðBþ BextÞ� ð2Þ

describes the evolution of the distribution function fa of electrically charged particles of type a (e.g.,

‘‘electrons’’ or ‘‘singly ionised oxygen ions’’), each particle having the electric charge qa and mass ma. Here,

the magnetic field is separated into two parts, where Bext is an external magnetic field (e.g., the Earth�s
geomagnetic field), and B is the self-consistent part of the magnetic field, created by the plasma. One Vlasov
equation is needed for each species of particles.

The particles interact via the electromagnetic field. The charge and current densities, q and j, act as

sources of self-consistent electromagnetic fields according to the Maxwell equations

$x � E ¼ q
e0
; ð3Þ
$x � B ¼ 0; ð4Þ
$x � E ¼ � oB

ot
; ð5Þ
$x � B ¼ l0jþ
1

c2
oE

ot
; ð6Þ

where c is the speed of light, e0 is the electric vacuum permittivity and l0 is the magnetic vacuum

permeability. The charge and current densities are related to the particle number densities na and mean

velocities va as

q ¼
X
a

qana ð7Þ
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and

j ¼
X
a

qanava; ð8Þ

respectively, and where the particle number densities and mean velocities are obtained as moments of the

particle distribution functions, as

naðx; tÞ ¼
Z 1

�1
faðx; v; tÞd3v ð9Þ

and

vaðx; tÞ ¼
1

naðx; tÞ

Z 1

�1
vfaðx; v; tÞd3v; ð10Þ

respectively.

The Vlasov equation for each species (1) together with the Maxwell equations (3)–(6) and the constit-

utive equations (7)–(10) form a closed, coupled system of non-linear partial differential equations and in-

tegral equations.
2.1. The Fourier transformed Vlasov equation

By using the Fourier transform pair,

faðx; v; tÞ ¼
Z 1

�1
bffaðx; g; tÞe�ig�v d3g; ð11Þ
bffaðx; g; tÞ ¼ 1

ð2pÞ3
Z 1

�1
faðx; v; tÞeig�v d3v; ð12Þ

the velocity variable v is transformed into a new variable g and the distribution function f ðx; v; tÞ is changed
to a new, complex valued, function bff ðx; g; tÞ, which obeys the transformed Vlasov equation

obffa
ot

� i$x � $g
bffa � qa

ma
iE � gbffa�

þ $g � ½ðB
n

þ BextÞ � g�bffao� ¼ 0; ð13Þ

where the nabla operator $g denotes differentiation with respect to g.

Eq. (13) together with the Maxwell equations (3)–(6) and the constitutive equations (7) and (8) where the

particle number densities and mean velocities are obtained as

naðx; tÞ ¼ ð2pÞ3½bffaðx; g; tÞ�g¼0 ¼ ð2pÞ3R½bffaðx; g; tÞ�g¼0 ð14Þ

and

vaðx; tÞ ¼ �i
ð2pÞ3

naðx; tÞ
$g
bffaðx; g; tÞh i

g¼0
¼ ð2pÞ3

naðx; tÞ
$gI½bffaðx; g; tÞ�n o

g¼0
; ð15Þ

respectively, form a new closed set of equations. One can note that the integrals over infinite v space in Eqs.

(9) and (10) have been converted to evaluations in g space in Eqs. (14) and (15). The symbols R½bffa� and
I½bffa� denote respectively the real and imaginary parts of the distribution function bffa. The last equalities in
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Eqs. (14) and (15) follow from that the real part of the distribution function is an even function with respect

to g, while the imaginary part is an odd function with respect to g, which follows from Eq. (12) because

faðx; v; tÞ is real valued. For the gradient $g
bffa, the real and imaginary parts are, respectively, odd and even

functions with respect to g. The constant ð2pÞ3 used in Eqs. (12), (14) and (15) is valid for three velocity

dimensions. For n velocity dimensions the corresponding constant has the value ð2pÞn.

2.2. A motivation for using the Fourier transform technique

A well-known property of the Vlasov equation is that an initially smooth solution to the equation may

become oscillatory in phase space ðx; vÞ due to kinetic effects as time increases, making the numerical so-

lution of the Vlasov equation a challenging task. The velocity derivatives becomes increasingly difficult to

perform numerically, with a catastrophic increase of truncation errors. The solution eventually becomes so
oscillatory that it is impossible to represent on a fixed numerical grid [10,11] due to the violation of the

sampling (Nyqvist) theorem, which states that more than two sampling points per ‘‘wavelength’’ are needed

to represent the solution on a grid.

In many physical problems, the distribution of particles in velocity space is significantly non-zero in a

relatively small part of velocity space, and decreases like a Gaussian function, i.e., as a Maxwellian dis-

tribution, for large values on velocity v. Mathematically, this implies that the Vlasov equation in the

Fourier transformed space has a smooth solution. In order to illustrate the idea, we study the one-di-

mensional Vlasov equation

of
ot

þ v
of
ox

� eE
me

of
ov

¼ 0; ð16Þ
oE
ox

¼ e
e0

n0

�
�
Z 1

�1
f ðx; v; tÞdv

�
; ð17Þ

and the Fourier transformed Vlasov equation

obff
ot

� i
o2bff
oxog

þ i
eE
m

gbff ¼ 0; ð18Þ
oEðx; tÞ
ox

¼ e
e0

n0
h

� 2pbff ðx; g; tÞg¼0

i
; ð19Þ

which are related by the Fourier transform pair

f ðx; v; tÞ ¼
Z 1

�1
bff ðx; g; tÞe�igv dg; ð20Þ
bff ðx; g; tÞ ¼ 1

2p

Z 1

�1
f ðx; v; tÞeigv dv: ð21Þ

If one assumes that the solution for all times vanishes as a Maxwellian for large v, with the estimate

j f ðx; v; tÞ j< C expð�cv2Þ ð22Þ

for some positive constants C and c, then the g derivatives of the Fourier transformed solution are bounded

as
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on

ogn
bff ðx; g; tÞ���� ���� ¼ ½Use Eq: ð21Þ� ¼ 1

2p

Z 1

�1
ðivÞneigvf ðx; v; tÞdv

���� ���� < ½Use the triangle inequality�

<
1

2p

Z 1

�1
jðivÞneigvf ðx; v; tÞjdv ¼ 1

2p

Z 1

�1
jvjnjf ðx; v; tÞjdv < ½By ð22Þ�

<
1

2p

Z 1

�1
jvjnC expð�cv2Þdv ¼ 1

2p
C

cðnþ1Þ=2 an; ð23Þ

where the constant

an ¼
ffiffiffi
p

p
2�n=2ðn� 1Þ!!; n even;

½ðn� 1Þ=2�!; n odd;

�
ð24Þ

and where symbols ! for the factorial and !! for the semi-factorial have their usual meaning. Thus, by the

assumption (22) for f ðx; v; tÞ it follows that bff ðx; g; tÞ is infinitely differentiable with respect to g with the
estimate (23) for the derivatives. It is now possible to make an error estimate of the truncation error of a

difference scheme used to approximate the g derivative in Eq. (18). The compact Pad�ee scheme [20], which is

used to perform numerical approximations of the first derivatives in g space (see [10,11]) has a truncation

error of size

jej6 1

120
Dg4 max

o5bff
og5

�����
�����; ð25Þ

where the fifth derivative gives n ¼ 5 in the relations (23) and (24), yielding the estimate

jej < 1

2p
Dg4

60

C
c3

ð26Þ

for the truncation error. It is thus possible to make an error estimate for the numerical differentiation in the

Fourier transformed velocity g space in Eq. (18), which is not possible for a numerical differentiation in the
original velocity v space in Eq. (16).
3. Electromagnetic waves

In the present section, the fully electromagnetic Maxwell equations are investigated. Ions and electrons

are allowed to move in the plasma, giving rise to two Vlasov equations, one for ions and one for electrons.

3.1. Conserved quantities of the Vlasov–Maxwell system

The Vlasov–Maxwell system has several time-conserved quantities, of which a few of the most important

conserved quantities are the energy norm

kfak2 ¼
Z
Xx

Z
Xv

f 2
a dXv dXx; ð27Þ

where Xx and Xv denote all x space and all velocity v space, respectively, and where a equals i for ions and e

for electrons. The total number of particles

Na ¼
Z
Xx

Z
Xv

fa dXv dXx; ð28Þ
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and, if the external magnetic field Bext is constant, then the total linear momentum, including the elec-

tromagnetic contributions [30],

p ¼
Z
Xx

Z
Xv

vðmifi

�
þ mefeÞdXv þ e0E� ðBþ BextÞ

�
dXx; ð29Þ

and the total energy

W ¼
Z
Xx

Z
Xv

1

2
v2ðmifi

"
þ mefeÞdXv þ

1

2
e0E2

 
þ ðBþ BextÞ2

l0

!#
dXx ð30Þ

are conserved, where v2 ¼ v � v, E2 ¼ E � E and ðBþ BextÞ2 ¼ ðBþ BextÞ � ðBþ BextÞ.
We note that the norm kfak has its counterpart in the Fourier transformed velocity space via the

Parseval relation, and the other integrals also have their counterparts in the Fourier transformed space via

basic properties of the Fourier transform. The corresponding expressions for the the above invariants are

kbffak2 ¼ 1

ð2pÞn
Z
Xx

Z
Xg

j bffa j2 dXg dXx; ð31Þ

where Xg denotes all g space and n is the number of velocity dimensions, and

Na ¼
Z
Xx

ð2pÞnðbffaÞg¼0 dXx; ð32Þ
p ¼
Z
Xx

½�ið2pÞn$gðmi
bffi þ me

bffeÞg¼0 þ e0E� ðBþ BextÞ�dXx; ð33Þ
W ¼
Z
Xx

"
� 1

2
ð2pÞnr2

gðmi
bffi þ me

bffeÞg¼0 þ
1

2
e0E2

 
þ ðBþ BextÞ2

l0

!#
dXx; ð34Þ

respectively, where r2
g ¼ $g � $g is the Laplacian in g space. In the absence of analytical ‘‘calibration’’

solutions for non-linear problems, these conserved quantities are indispensable for checking the correctness

of any numerical scheme used the solve the Vlasov–Maxwell system; see Section 4.4 below. Similar as in [11]
for the Vlasov–Poisson system, the present problem is restricted to a bounded domain in g space, and

outflow boundary conditions are devised in g space so that the norm kbffak2 is a non-increasing, positive

function of time, assessing that the problem is well-posed [15,26]. The well-posedness carries over trivially to

the present Vlasov–Maxwell system, since the only difference is how to calculate the electric and magnetic

fields. We point out that the discretized version of this norm is a very good indicator on whether or not a

numerical scheme used is stable [10,11].

3.2. The conserved divergences of the electromagnetic field

A property of the Maxwell equations is that the two first Eqs. (3) and (4) can be seen on as parts of the

initial conditions to the last two Eqs. (5) and (6), and also as conserved quantities of the Maxwell equations.

The reason for this property of the Maxwell equations is that the electric charge and current densities fulfill
the continuity equation

oq
ot

þ $x � j ¼ 0; ð35Þ

which historically was used by Maxwell to derive the Maxwell equations in its current form.
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In a numerical solution, truncation errors are introduced in the integration of the electromagnetic fields

in Eqs. (5) and (6) and in the integration of the Vlasov equation so that Eq. (35) may not be fulfilled locally.

The integration of Eqs. (5) and (6) may give rise to an accumulation of errors in Eqs. (3) and (4) over time.

If the divergences (3) and (4) after some time are not fulfilled, then the numerical scheme produces un-

physical values for the fields, and the value of the obtained solution is questionable.

3.3. Physical and unphysical solutions

It may be appropriate here to discuss shortly what is meant by a ‘‘physical solution’’ of the Maxwell

equations. If the two vector-valued Maxwell equations (5) and (6) are integrated numerically in time, with

initial conditions which do not fulfill the divergence equations (3) and (4), then the fields are from the very

beginning unphysical, and any results from the numerical simulation must be regarded as questionable. If

solved together with the Vlasov equation, the unphysical fields enter as forces into the Vlasov equation

where particles will be accelerated in an unphysical manner.

If, on the other hand, the divergence equations (3) and (4) are fulfilled at all times, up to the local

truncation error of the numerical scheme, then the solution will at any time work as a physical initial
condition for later times, so that locally in time (i.e., for short periods of time after the initial condition) one

will have a solution which simulates the mathematical model up to the truncation error of the numerical

scheme.

In long-time simulations, any numerical scheme will give rise to truncation errors so that the so-

lution may deviate strongly from the exact solution, after a long time. In some situations, this may not

be a problem as long as the numerical solution behaves like the physical system locally in time. One

such example is turbulence simulations, where it is in principle impossible to follow a solution exactly

for a long time, due to positive Liapunov exponents [27] which increase small perturbations exponen-
tially with time. Long-time turbulence simulations may still be of value if the numerical solution be-

haves like the physical system to be simulated (for example: like plasma, or like electromagnetic fields)

locally in time.

In this view, it is more severe if a numerical solution of the Maxwell equations does not conserve the

divergences (3) and (4) after some time, because after this time the numerical solution does not resemble the

behaviour of electromagnetic fields even locally in time. If the divergences are conserved, then the numerical

solution does resemble electromagnetic fields locally in time, even if the numerical solution deviates from

the exact solution.
3.4. The Lorentz inhomogeneous wave equations

An alternative description [16,28] of the fields is given by the electrodynamic potential and vector po-

tential which are related to the electromagnetic field as

E ¼ �$U� oA

ot
; ð36Þ
B ¼ $x � A ð37Þ

and which, by choosing the Lorentz condition for the divergence of the vector potential,

$x � Aþ 1

c2
oU
ot

¼ 0 ð38Þ

yields the Lorentz wave equations
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1

c2
o2U
ot2

�r2U ¼ q
e0
; ð39Þ
1

c2
o2A

ot2
�r2A ¼ l0j: ð40Þ

The Lorentz wave equations is a description of the physics equivalent to the Maxwell equations (3)–(6).

In this description, the divergence of the magnetic field is zero, since the divergence of the right-hand side

of Eq. (37) is zero by the vector relation $x � ð$x � AÞ ¼ 0. The divergence of the electric field can be set to

the correct value by using the Maxwell equation for the divergence of the electric field (3) together with Eq.

(36), yielding

$x � E ¼ �r2U� $x �
oA

ot
¼ q

e0
ð41Þ

or

�r2U ¼ q
e0
þ $x �

oA

ot
: ð42Þ

This equation for U conserves the divergence of the electric field, and is solved [instead of Eq. (39)] together

with Eq. (40).

There is a close relationship between the Lorentz condition and the continuity equation. Solving for j

and q in Eqs. (40) and (42), and inserting the results into the left-hand side of the continuity equation (35),

we have

oq
ot

þ $x � j ¼
o

ot
e0

��
�r2U� $x �

oA

ot

	�
þ $x �

1

l0

1

c2
o2A

ot2

��
�r2A

	�
¼ � 1

l0

r2 $x � A
�

þ 1

c2
oU
ot

	
: ð43Þ

If the continuity equation (35) is fulfilled exactly, leading to that the left-hand side in Eq. (43) equals zero,

then it follows from the integration of the elliptic equation (43), with periodic boundary conditions (which
we will have in the present article), that the Lorentz condition (38) is fulfilled. This is shown by a Fourier

decomposition of the potentials,

Uðx; tÞ ¼
X
k

bUUkðtÞ exp½iðk � xÞ�; ð44Þ
Aðx; tÞ ¼
X
k

bAAkðtÞ exp½iðk � xÞ�; ð45Þ

which inserted into Eq. (43) (with the left-hand side equal to zero) leads to that the Fourier components of

A and U for k2 6¼ 0 fulfill the Fourier transformed Lorentz condition since

0 ¼ k2

l0

ik � Ak

�
þ 1

c2
oUk

ot

	
ð46Þ

or

ik � Ak

�
þ 1

c2
oUk

ot

	
¼ 0; k2 6¼ 0: ð47Þ
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If the Fourier component of U corresponding to k2 ¼ 0 is set to zero, bUU0ðtÞ ¼ 0, in the numerical solution of

Eq. (42), then each Fourier component Ak and Uk fulfills the Lorentz condition and which therefore also A

and U do. As a contrast, if Eq. (39) [instead of Eq. (42)] is solved together with Eq. (40), then the Lorentz

condition is not necessarily fulfilled: Solving q and j Eqs. (39) and (40), and inserting the results into the left-

hand side of the continuity equation (35) gives

oq
ot

þ $x � j ¼
1

l0

1

c2
o2

ot2

�
�r2

	
$x � A
�

þ 1

c2
oU
ot

	
: ð48Þ

If the continuity equation (35) is again fulfilled exactly, leading to that the left-hand side in Eq. (48) equals

zero, then the integration of this hyperbolic equation, with periodic boundary conditions, will give that the

Lorentz condition (38) is only fulfilled if also the initial conditions of Eq. (48) are specified correctly.

Therefore the system (40) and (42) is more ‘‘robust’’ in the sense that the Lorentz condition will be satisfied

at all times regardless on the initial condition on A, if the continuity equation is fulfilled exactly. This

somewhat surprising result comes from that in the solution of (40) and (42), one only has to specify initial
conditions on A (and not on U) leading to that the Lorentz condition is fulfilled, while in the solution of

Eqs. (39) and (40) one has to specify initial conditions on both A and U; it is then easy to specify initial

conditions on the time derivative of U so that the Lorentz condition is violated.

If the continuity equation is not fulfilled exactly in the numerical solution of the Vlasov equation, then

the Lorentz condition will also be violated, which follows from Eqs. (43) and (48). A nice property of Eq.

(43) [which was derived from Eqs. (40) and (42)] is that the violation of the Lorenz condition is local in time

and the errors therefore not will accumulate over time. On the other hand, if the system (39), (40) is solved,

then any error in the continuity equation will act as a source to the hyperbolic equation (48) and errors may
accumulate over time in the Lorentz condition, making the solution increasingly incompatible with the

Maxwell equations. Apparently, the system (40) and (42) is more robust than the system (39) and (40) if

errors are introduced in the continuity equation.

Finally we discuss the relationship between Eqs. (39) and (42): Solving for q in Eq. (39) and inserting the

result into Eq. (42) gives the result

o

ot
$x � A
�

þ 1

c2
oU
ot

	
¼ 0; ð49Þ

which is fulfilled if the Lorentz condition is fulfilled. We have shown that the Lorentz condition is fulfilled

(if the continuity condition is fulfilled), in the solution of the system (40) and (42), and we therefore

conclude that every solution of the system (40) and (42) gives solutions U and A which are solutions to Eqs.

(39) and (40). The opposite does not hold, since in the system (39) and (40) it is possible to give initial

conditions which violate the Lorentz condition and therefore the system (39) and (40) can produce solutions
which are not necessarily solutions to the system (40) and (42).

By introducing a separate variable C for the time derivative of the vector potential A, the Lorentz wave

equations (40) and (42) can be rewritten in a first-order system with respect to time,

oA

ot
¼ C;

oC
ot

¼ c2ðr2Aþ l0jÞ; ð50Þ
�r2U ¼ q
e0
þ $x � C; ð51Þ

and the electric and magnetic fields are calculated as

E ¼ �$U� C ð52Þ
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and

B ¼ $x � A; ð53Þ

respectively, in the new variables.

The system (50)–(53) produces physical electric and magnetic fields regardless of the initial conditions on

A and C, in the sense that the first two Maxwell equations for the divergences (3) and (4) are fulfilled.

Therefore, a consistent numerical scheme will also produce physical solutions, up to the local truncation

error of the numerical scheme, even after a long time; no artificial electric and magnetic charges are created

and accumulated by the numerical scheme, which could be the case if the two last Maxwell equations (5)
and (6) are integrated numerically in time. This general property of the system is an advantage, since it is

not necessary to use special, divergence-conserving schemes to solve these equations, and it therefore opens

up the possibility to switch between different numerical methods without having to pay too much attention

to the divergences of the electromagnetic field. In complicated geometries, it may be a disadvantage that an

elliptic equation (51) has to be solved numerically to obtain the potential U. In our case, however, the

geometry is very simple and there are no problems to solve this elliptic equation efficiently by means of

Fourier transform techniques.
4. The scaled, two-dimensional Vlasov–Maxwell system

We restrict the Vlasov–Maxwell system to two spatial and two velocity dimensions. We consider an

external and a self-consistent magnetic field Bext ¼ bxx3Bext and Bðx1; x2; tÞ ¼ bxx3Bðx1; x2; tÞ, respectively, wherebxx3 is the unit vector along the magnetic field lines. The electric field E, the current density j and the po-

tentials A and C are directed in the plane perpendicular to the magnetic field lines, i.e., the electric field is

Eðx1; x2; tÞ ¼ bxx1E1ðx1; x2; tÞ þ bxx2E2ðx1; x2; tÞ, where bxx1 and bxx2 are the Cartesian unit vectors in the x1 and x2
directions, respectively, and similarly for j, A and C. The dynamics of the system in velocity space and the

Fourier velocity space is restricted to the plane perpendicular to the magnetic field, i.e., v ¼ bxx1v1 þ bxx2v2 and
g ¼ bxx1g1 þ bxx2g2. We use the scaling of variables according to Eqs. (16)–(18) in [11], plus a scaling of the

vector potentials, charge and current densities, and ion distribution functions into dimensionless, primed

quantities as

t ¼ x�1
pe t

0; ð54Þ
v1 ¼ vth;ev01; v2 ¼ vth;ev02; ð55Þ
x1 ¼ rDx01; x2 ¼ rDx02; ð56Þ
g1 ¼ v�1
th;eg

0
1; g2 ¼ v�1

th;eg
0
2; ð57Þ
bffe ¼ n0bff 0
e ;

bffi ¼ n0bff 0
i ; ð58Þ
fe ¼ n0v�2
th;ef

0
e ; fi ¼ n0v�2

th;ef
0
i ; ð59Þ
E1 ¼ v2th;er
�1
D ðme=eÞE0

1; E2 ¼ v2th;er
�1
D ðme=eÞE0

2; ð60Þ
U ¼ v2th;eðme=eÞU0; ð61Þ
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Bext ¼ xpeðme=eÞB0
ext; B ¼ xpeðme=eÞB0; ð62Þ
A1 ¼ vth;e
me

e
A0
1; A2 ¼ vth;e

me

e
A0
2; ð63Þ
C1 ¼ xpevth;e
me

e
C0

1; C2 ¼ xpevth;e
me

e
C0

2; ð64Þ
q ¼ n0eq0; ð65Þ
j1 ¼ vth;en0ej01; j2 ¼ vth;en0ej02; ð66Þ

where n0 is the background electron particle number density, xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=e0me

p
is the electron plasma

frequency, vth;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me

p
is the is the electron thermal velocity, kB is Boltzmann’s constant, Te is the

electron temperature and rD ¼ vth;e=xpe is the electron Debye length. With this scaling, the Fourier
transformed Vlasov equation for the ions and electrons attain the dimensionless form, omitting the

primes,

obffi
ot

� i
o2bffi

ox1og1
� i

o2bffi
ox2og2

� me

mi

iðE1g1

"
þ E2g2Þbffi þ ðBext þ BÞ g1

obffi
og2

 
� g2

obffi
og1

!#
¼ 0; ð67Þ
obffe
ot

� i
o2bffe
ox1og1

� i
o2bffe
ox2og2

þ iðE1g1

"
þ E2g2Þbffe þ ðBext þ BÞ g1

obffe
og2

 
� g2

obffe
og1

!#
¼ 0; ð68Þ

respectively. The Lorentz wave equations (39) and (40) attain the dimensionless form

o2U
ot2

� c
vth;e

� 	2

r2U ¼ c
vth;e

� 	2

q; ð69Þ
o2A

ot2
� c

vth;e

� 	2

r2A ¼ j; ð70Þ

and the first-order system (50) and (51) takes the form

oA1

ot
¼ C1;

oC1

ot
¼ c

vth;e

� 	2
o2A1

ox21

�
þ o2A1

ox22

	
þ j1; ð71Þ
oA2

ot
¼ C2;

oC2

ot
¼ c

vth;e

� 	2
o2A2

ox21

�
þ o2A2

ox22

	
þ j2; ð72Þ
� o2U
ox21

�
þ o2U

ox22

	
¼ qþ oC1

ox1
þ oC2

ox2
; ð73Þ

and the dimensionless electric and magnetic fields are calculated as

E1 ¼ � oU
ox1

� C1; E2 ¼ � oU
ox2

� C2; ð74Þ
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and

B ¼ oA2

ox1
� oA1

ox2
; ð75Þ

respectively. The charge and current densities are calculated from the ion and electron distribution func-

tions [cf. Eqs. (14) and (15)] as

q ¼ ð2pÞ2½RðbffiÞ �RðbffeÞ�g1¼g2¼0; ð76Þ
j1 ¼ ð2pÞ2 oIðbffiÞ
og1

"
� oIðbffeÞ

og1

#
g1¼g2¼0

; ð77Þ
j2 ¼ ð2pÞ2 oIðbffiÞ
og2

"
� oIðbffeÞ

og2

#
g1¼g2¼0

; ð78Þ

respectively.

4.1. Discretisation

Similar as [11], we discretise the problem on a rectangular, equidistant grid. The known variables in x space

are discretised as x1;i1 ¼ i1Dx1 where i1 ¼ 0; 1; . . . ; Nx1 � 1 and x2;i2 ¼ i2Dx2 where i2 ¼ 0; 1; . . . ; Nx2 � 1; the

grid sizes are Dx1 ¼ L1=Nx1 and Dx2 ¼ L2=Nx2 where L1 and L2 are the domain sizes in the x1 and x2 directions,
respectively.

In g space one is free to use different domain sizes for the ion and electron Fourier transformed Vlasov
equations, (or, in v space for the original Vlasov equations). This is convenient, because one can use the most

efficient discretisation in g (or v) space for each particle distribution function; inmany problems, ions occupy a

smaller part of the velocity v space than the more mobile electrons, and therefore a smaller domain size can be

used in v space, and a larger domain size in g space. Thus, we use the domain size 06 g1 6 g1;a;max and

�g2;a;max 6 g2 6 g2;a;max for particle species a ¼ i; e where i and e denote ions and electrons, respectively. The

known Fourier transformed velocity variables are for particle species a discretized as g1;a;j1 ¼ j1Dg1;a where
j1 ¼ 0; 1; . . . ; Ng1 and g2;a;j2 ¼ j2Dg2;a where j2 ¼ �Ng2 ; . . . ;�1; 0; 1; . . . ; Ng2 . For negative g1;a, we use the

symmetry due to the real-valued distribution functions in v space, described in [11]. The grid sizes are
Dg1;a ¼ g1;a;max=Ng1 and Dg2;a ¼ g2;a;max=Ng2 . The time is discretised as tk ¼ tk�1 þ Dtk where k ¼ 1; 2; . . . ; Nt,

and where the time time step Dtk is calculated adaptively; see Section 4.3 below.

The particle distribution functions for particle species a is discretized and enumerated such thatbffaðx1;i1 ; x2;i2 ; g1;a;j1 ; g2;a;j2 ; tkÞ � bff k
a;i1;i2;j1;j2

. The electrodynamic potential is discretised as Uðx1;i1 ; x2;i2 ; tkÞ � Uk
i1;i2

and similarly for the quantities E1, E2, A1, A2, C1 and C2.

For convenience, we have used the same numbers of grid points Ng1 and Ng2 in the discretisation of g

space for both the electron and ion Vlasov equations, and we have used even numbers of grid points Nx1 and

Nx2 in the discretisation of x space. Note that we have used the same symbols j1 and j2 both to denote the
current densities in Eqs. (77) and (78), and and to denote indices in the present section, but we think that the

meaning of these symbols should be clear from the context.

4.2. The numerical integration of the Lorentz–Vlasov system

The Vlasov equation for ions (67) is solved with the method described in [11], where in the treatment of

boundary conditions in g space, one has to take into account the factor ð�me=miÞ multiplying the magnetic

field. This is straightforwardly done by replacing B by B0 ¼ ð�me=miÞðBþ BextÞ in [11].
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The Lorentz system (71) and (72) is invoked into the Runge–Kutta time stepping scheme described in

[11]. The calculation of the x1 and x2 derivatives in Eqs. (71)–(75), and the integration of the elliptic

equation (73) for U is performed with pseudo-spectral methods, in a similar manner as in [11].

The g derivatives needed to calculate the current density j in Eqs. (77) and (78) are approximated by

sixth-order difference schemes. For the ion and electron distribution functions (bffi and bffe, denoted by bffa),
the scheme [25] for the g1 derivative is

oIðbffaÞ
og1

" #
g¼0

� g3 � 9g2 þ 45g1 � 45g�1 þ 9g�2 � g�3

60Dg1;a
ð79Þ

¼ g3 � 9g2 þ 45g1
30Dg1;a

; ð80Þ

where gj1 is used for IðbffaÞki1;i2;j1;0 and Dg1;a is used for Dg1;i and Dg1;e. The last equality follows again from

the symmetry property of the imaginary part of the distribution function, which is odd with respect to g, so

that IðbffaÞki1;i2;�j1;0
¼ �IðbffaÞi1;i2;j1;0. Similarly, for the g2 derivative,

oIðbffaÞ
og2

" #
g¼0

� h3 � 9h2 þ 45g1
30Dg2;a

; ð81Þ

where hj2 is written for IðbffaÞki1;i2;0;j2 and Dg2;a is used for Dg2;i and Dg2;e.

4.3. Stability constraints on the time step

The analysis of the numerical stability condition on the time step size follows the analysis in Section 3.3
in [11] for the Vlasov equation for electrons. The stability condition for the solution of the homogeneous

(j ¼ 0) Lorentz wave equations (71) and (72) with the Runge–Kutta method is

Dt <

ffiffiffi
8

p

kmax;L

; ð82Þ

where the largest eigenvalue is given by

kmax;L ¼ c
vth;e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

x1
þ K2

x2

q
; ð83Þ

where the maximum values of approximations of wave numbers by the pseudo-spectral method [11] are

Kx1 ¼
p
Dx1

; ð84Þ
Kx2 ¼
p
Dx2

: ð85Þ

The stability conditions for the electron and ion Vlasov equations are calculated, similarly as in Section 3.3

in [11], to be

kmax;e ¼
p
Dx1

ffiffiffi
3

p

Dg1;e
þ p
Dx2

ffiffiffi
3

p

Dg2;e
þ E1;maxg1;e;max þ E2;maxg2;e;max þ Bmaxg1;e;max

ffiffiffi
3

p

Dg2;e
þ Bmaxg2;e;max

ffiffiffi
3

p

Dg1;e

ð86Þ
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and

kmax;i ¼
p
Dx1

ffiffiffi
3

p

Dg1;i
þ p
Dx2

ffiffiffi
3

p

Dg2;i
þ me

mi

E1;maxg1;i;max

 
þ E2;maxg2;i;max þ Bmaxg1;i;max

ffiffiffi
3

p

Dg2;i
þ Bmaxg2;i;max

ffiffiffi
3

p

Dg1;i

!
;

ð87Þ

respectively.

The total stability condition is determined by the most restrictive one, and is given by

Dt ¼ CFL

ffiffiffi
8

p

kmax

; ð88Þ

where the maximum eigenvalue of the scheme is given by

kmax ¼ maxðkmax;L; kmax;e; kmax;iÞ ð89Þ

and where the positive CFL number obeys the condition

CFL < 1 ð90Þ

for stability.

Similarly to [11], the artificial boundaries at g1 ¼ g1;max and at g2 ¼ �g2;max are not included in the
present analysis.

4.4. The conserved quantities

4.4.1. The number of particles

It shown in [11] that the numerical scheme conserves globally the number of particles (32) exactly,

approximated by the sum representation

Na ¼ ð2pÞ2
XNx1�1

i1¼0

XNx2�1

i2¼0

bffa;i1;i2;0;0Dx2Dx1 ð91Þ

of the integrals in (32), where bff is evaluated at g ¼ 0. This has been verified in the numerical experiments

presented in this article, where the number of particles has been conserved by the numerical scheme up to

the precision of the computer. It stems from that, along g ¼ 0, Eq. (13) reduces to

obffa
ot

 !
g¼0

� ði$x � $g
bffaÞg¼0 ¼ 0 ð92Þ

which, by the definitions of the particle number densities (9) and mean velocities (10), simply expresses the

continuity equation for the particles

ona
ot

þ $x � ðnavaÞ ¼ 0: ð93Þ

In the numerical scheme used to approximate the Vlasov equation, the the total number of particles is
fulfilled exactly, and locally up to the truncation error of the scheme, which solves the discretized version of

Eq. (92).
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4.4.2. The total linear momentum and energy

In order to assess that the numerical scheme conserves the total linear momentum and energy up to the

accuracy of the numerical scheme, a numerical experiment was carried out for a fully non-linear problem.

We used parameters consistent with the conditions in the Earth�s magnetosphere: the ion-electron mass

ratio was set to mi=me ¼ 1836, the speed of light to electron thermal velocity ratio was set to c=vth;e ¼ 70, the

ratio ion-electron temperature ratio was set to Ti=Te ¼ 8, and the external magnetic field was set to

Bext ¼ 0:115. As an initial condition, we assume a neutral but non-uniform density distribution in space,

with a population of the electrons moving relative to the ions and to the background electrons with the
mean velocity v0 ¼ 0:5. The electron distribution function in velocity v space was set to

feðx1; x2; v1; v2; 0Þ ¼
1

ð2pÞ exp

��
� 1

2
ðv21 þ v22Þ

�
þ 0:5 exp

n
� ½0:01ðx1 � 250pÞ�2

� ½0:01ðx2 � 250pÞ�2
o
exp

�
� 1

2
ððv1 � v0Þ2 þ v22Þ

�

ð94Þ

and the ions

fiðx1; x2; v1; v2; 0Þ ¼
1

ð2pÞ
vth;e
vth;i

� 	2

1
�

þ 0:5 exp
n
� ½0:01ðx1 � 250pÞ�2

� ½0:01ðx2 � 250pÞ�2
o�

exp

"
� 1

2
ðv21 þ v22Þ

vth;e
vth;i

� 	2
#
: ð95Þ

In the Fourier transformed velocity space, these initial conditions become, for the electrons and ions, re-

spectively,

bffeðx1; x2; g1; g2; 0Þ ¼ 1

ð2pÞ2
exp

�
� 1

2
ðg21 þ g22Þ

�
1
�

þ A expðiv0g1Þ exp
n
� ½0:01ðx1 � 250pÞ�2

� ½0:01ðx2 � 250pÞ�2
o�

ð96Þ

and

bffiðx1; x2; g1; g2; 0Þ ¼ 1

ð2pÞ2
exp

"
� 1

2
ðg21 þ g22Þ

vth;e
vth;i

� 	�2
#

1
�

þ A exp
n
� ½0:01ðx1 � 250pÞ�2

� ½0:01ðx2 � 250pÞ�2
o�

: ð97Þ

We point out that the Fourier transformation of initial conditions could be performed analytically here but

may be necessary to perform numerically for more complicated cases.

The parameters used in the numerical simulation in the present section are as follows: The spatial do-

main was set to 06 x1 6 500p and 06 x2 6 500p. For the electron Vlasov equation 06 g1 6 10 and

�106 g2 6 10 and for the ion Vlasov equation 06 g1 6 100 and �2006 g2 6 100. The number of intervals
was set to Nx1 ¼ 30, Nx2 ¼ 30, Ng1 ¼ 30 and 2Ng2 ¼ 60. The number of time steps taken was Nt ¼ 2114; the

end time was tend ¼ 417. No numerical dissipation was used.

In the scaled variables used, the expressions for the total linear momentum (29) and energy (30) attain

the form

ptot ¼
Z
Xx

"
� ið2pÞ2$g

mi

me

bffi�
þ bffe	

g¼0

þ E� ðBþ BextÞ
#
dXx � pmatter þ pEM; ð98Þ



Fig. 1. The time development of x1 and x2 components of the total linear momentum Dptot, which is the sum of the linear momentum of

the matter Dpmatter and the linear momentum of the electromagnetic field DpEM. (a) Linear momentum, x1 component. (b) Linear

momentum, x2 component.
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where pmatter and pEM are the contribution to the linear momentum from the particles and electromagnetic

field, respectively, and

Wtot ¼
Z
Xx

(
� 1

2
ð2pÞ2r2

g

mi

me

bffi�
þ bffe	

g¼0

þ 1

2
E2

"
þ c2

v2th;e
ðBþ BextÞ2

#)
dXx

� Wkinetic þ WE þ WB; ð99Þ

respectively, where Wkinetic, WE and WB is the kinetic, electric and magnetic energy, respectively. The integrals
are taken over the rectangular domain in (x1, x2) space, approximated numerically with sum representa-

tions. The gradient operator $g ¼ bxx1o=og1 þ bxx2o=og2 and Laplace operator r2
g ¼ o2=og21 þ o2=og22 are

approximated numerically with sixth-order difference approximations [25].

In Fig. 1 the x1 and x2 components of the total linear momentum is plotted, together with the particle

linear momentum and electromagnetic field linear momentum. The momentum at time zero has been

subtracted (indicated by D) to make the comparison easier. It is clear that the total particle momentum

p1;matter, p2;matter and electromagnetic momentum p1;EM, p2;EM perform large-amplitude fluctuations, but the

total momentum p1;tot, p2;tot remains almost constant with only small fluctuations. Similarly in Fig. 2,
variation of the total energy Wtot is plotted together with the variation of the kinetic energy Wkinetic, the

electric energy WE and the magnetic energy WB. Clearly, the total energy is almost constant, while the kinetic

and eletromagnetic energies are fluctuating. One can see both high-frequency fluctuations performed by the

electrons and also a slower development on an ion time scale where the magnetic energy is converted into

kinetic energy.

4.5. Electron and ion X waves

Electromagnetic waves propagating in vacuum can have two different polarisations, with identical dis-

persive properties, i.e., both wave modes travel with the speed of light. With the presence of a static

magnetic field in a plasma makes, this symmetry is broken and the two polarisations break into two

separate wave modes, the so-called ordinary (O) and ‘‘fast’’ extraordinary (X ) modes with different dis-
persive properties; see, e.g. [4] or [14] where these wave modes are discussed. Being able to travel both in



Fig. 2. The time development of the total energy DWtot, which is the sum of the electric energy DWE, magnetic energy DWB and kinetic

energy of the matter DWkinetic.

518 B. Eliasson / Journal of Computational Physics 190 (2003) 501–522
vacuum and plasma, X and O modes are of special interest in the studies of distant objects in the universe,

since electromagnetic waves is often the only source of information from these objects. Except for these

wave modes, there exist also a ‘‘slow’’ X mode which is also a high-frequency mode with a slightly lower
frequency than the fast X mode, and a low-frequency ion X mode. We mention that these named wave

modes are the ones which can be studied in a fluid (Navier–Stokes) description of the plasma. In a kinetic

(Vlasov) description of the plasma, these wave modes turn out to be only a few of the infinitely many

branches of Bernstein waves; see, e.g. [24] who studied the linear behavior of electromagnetic ion and

electron Bernstein waves. The linear X modes and Bernstein waves will, together with a fully non-linear

problem, be studied numerically in the present section.

An approximate dispersion law for the high frequency electromagnetic wave perpendicular to the

magnetic field, obtained from a fluid description of cold electrons [14], is given by

c2k2

x2
¼ 1�

x2
peðx2 � x2

peÞ
x2ðx2 � x2

uhÞ
; ð100Þ

where xuh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pe þ x2
ce

q
is the upper hybrid frequency and xce ¼ eBext=me is the electron cyclotron

frequency. By using the relation vth;e ¼ xperD in the left-hand side of Eq. (100), the equation is rewritten
as

ðc=vth;eÞ2ðkrDÞ2ðxpe=xceÞ2

ðx=xceÞ2
¼ 1� ðxpe=xceÞ2½ðx=xceÞ2 � ðxpe=xceÞ2�

ðx=xceÞ2½ðx=xceÞ2 � ðxuh=xceÞ2�
: ð101Þ

We will investigate the case when xuh=xce ¼ 4 from which it follows that xpe=xce ¼
ffiffiffiffiffi
15

p
. We also use the

ratio c=vth;e ¼ 50 between the speed of light and the electron thermal velocity. Eq. (101) is solved for

x=xce and displayed in Fig. 3(a). For large k, the fast X wave approaches the dispersion curve of light in

vacuum.

The slow X wave approaches the upper hybrid oscillation with frequency x ¼ xuh for large k. In the

extreme short wave length limit (large k), thermal and kinetic effects are important, and the slow X wave

goes smoothly over to one of the electron Bernstein waves [24].



Fig. 3. Dispersion diagram for the high frequency electromagnetic extraordinary mode, obtained from cold plasma fluid theory, and

power spectrum (decibel) of the transverse part E2 of the electric field obtained from Vlasov simulation; xuh ¼ 4xce. (a) Dispersion

diagram. (b) Power spectrum.

Fig. 4. Dispersion diagram for the ion extraordinary wave, obtained from cold plasma fluid theory, and power spectrum (decibel) of

the transverse part E2 of the electric field obtained from the Vlasov simulation. The waves go over to Alfv�een waves at small kx1 and to

lower hybrid hybrid oscillations at large kx1 ; xuh ¼ 4xce, mi=me ¼ 400. (a) Dispersion diagram. (b) Power spectrum.
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An approximate dispersion law for low frequency electromagnetic waves perpendicular to the magnetic

field, obtained from a fluid description of cold ions and electrons [14], is given by

c2k2

x2

x2
ci � x2 þ x2

pi

x2
ci � x2

 
þ
x2

pe

x2
ce

!
¼

x2
ci � x2 þ x2

pi

x2
ci � x2

 
þ
x2

pe

x2
ce

!2

�
x2

pix

xci x2
ci � x2

� � !2

; ð102Þ

where xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=e0me

p
is the ion plasma frequency and xci ¼ eBext is the ion cyclotron frequency. For

numerical efficiency we use the mass ratio mi=me ¼ 400 between the ion and electron masses, which gives the

ratios xpi=xce ¼
ffiffiffiffiffi
15

p
=20 and xci=xce ¼ 1=400. Eq. (102) is solved for x=xce and displayed in Fig. 4(a). For

large kx1 , the dispersion curve approaches the lower hybrid frequency xlh, approximately given by
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x�2
lh ¼ x�2

pi þ ðxcixceÞ�1 ð103Þ

and which is indicated in Fig. 4(a). For very small kx1 (and low x), the dispersion curve approaches the

dispersion curve for Alfv�een waves, which is given approximately by

x2

k2
¼ c2x2

ci

x2
pi

ð104Þ

also indicated in Fig. 4(a).

The kinetic dispersion laws for electromagnetic Bernstein waves in a hot plasma have been treated by

Puri et al. [24], who compare the fully kinetic and electromagnetic dispersion laws with the dispersion laws

obtained by the electrostatic and cold plasma approximations. One electromagnetic effect is that each

electrostatic electron Bernstein modes will split into two branches in the fully electromagnetic case.
A numerical experiment was set up with the same physical parameters as above. The power spectra for

the transverse part E2 of the electric field are displayed in Figs. 3(b) and 4(b), where the latter spectrum is a

closeup of the low frequency components. The energy for the high frequency waves in Fig. 3(b) is con-

centrated at the linear dispersion curves for the fast and slow X modes, displayed in Fig. 3(a), in good

agreement with theory. In Fig. 3(b), one can also see some weakly excited waves near the gyro harmonics

x=xce � 1; 2; 3; 4, which are waves not covered by the dispersion curves in Fig. 3(a), obtained from the

cold plasma fluid model. The weakly excited mode at x=xce � 1 is an electromagnetic effect which does not

exist in the electrostatic case [24]. The energy spectrum for the low frequency waves in Fig. 4(b) shows good
similarity with the dispersion curve for the low frequency wave in Fig. 4(a). The width of the energy bands

in the power spectrum is the frequency resolution obtained in the simulation; a longer simulation would

resolve the waves more. The frequencies of the waves in Fig. 4(b) for large k is slightly higher than the

corresponding frequencies in the dispersion diagram in Fig. 4(a), which probably is a thermal effect, not

included in the cold plasma fluid model.

The parameters used in the numerical simulation in the present section are as follows: The simulation

domain was restricted to one spatial dimension, x1, and two velocity dimensions, plus time. The spatial

domain was set to 06 x1 6 2000p. For the electron Vlasov equation 06 g1 6 10 and �106 g2 6 10 and for
the ion Vlasov equation 06 g1 6 200 and �2006 g2 6 200. The number of intervals was set to Nx1 ¼ 100,

Ng1 ¼ 30 and 2Ng2 ¼ 60. The initial conditions on the particle densities were set to a sum of waves with all

possible wave numbers. The initial condition for electrons was set tobffeðx1; x2; g1; g2; 0Þ ¼ nðxÞbffe;0ðg1; g2Þ ð105Þ

and for ionsbffiðx1; x2; g1; g2; 0Þ ¼ nðxÞbffi;0ðg1; g2Þ; ð106Þ

respectively. The density perturbation for both ions and electrons was set to

nðxÞ ¼ 1

"
þ A

X49
i1¼1

i1 sinð0:05i1x1Þ
#

ð107Þ

with the relative amplitude set to A ¼ 10�7 so that the problem is close to linear. and the velocity distri-
bution for electrons and ions was set to a Maxwellian in the Fourier transformed velocity space

bffe;0ðg1; g2Þ ¼ 1

ð2pÞ2
exp

�
� 1

2
ðg21 þ g22Þ

�
ð108Þ
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and

bffi;0ðg1; g2Þ ¼ 1

ð2pÞ2
exp

"
� 1

2
ðg21 þ g22Þ

vth;e
vth;i

� 	�2
#
; ð109Þ

respectively. The number of time steps taken was Nt ¼ 97280; the end time was tend ¼ 8340. No numerical

dissipation was used. The ion-electron mass ratio was mi=me ¼ 400 and the ion and electron temperatures
were set equal, Ti ¼ Te, giving the factor ðvth;e=vth;iÞ�2 ¼ 1=400 in Eq. (109).
5. Conclusions

The numerical algorithm for solving the two-dimensional electrostatic Vlasov–Poisson system for

electrons, has been generalised to the full Vlasov–Maxwell system for electrons and ions. The problem of

the conservation of the electric and magnetic divergences has been solved by using the Lorentz potentials,
written in a form which conserves the divergences at all times, and therefore a numerical scheme conserves

the divergences up to the local truncation error of the scheme. Numerical test were performed and the

numerical results were compared with known theory, verifying that electromagnetic effects and the motion

of electrons and ions are simulated correctly. We want to point out that there seems not to be any re-

strictions preventing the method to be extended to the fully three-dimensional Vlasov–Maxwell system. The

crucial point is to find stable outflow boundary conditions in the Fourier transformed, three-dimensional

velocity space, which is a subject of future research.
6. Distribution of the computer code

The Fortran 90 code which has been used to produce the numerical results in the present article can be

downloaded from the Web site http://www.tp4.ruhr-uni-bochum.de/~bengt.
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